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Abstract
Thousands of people become 
lost in the wilderness each year 
and search and rescue personnel 
are called in to search for and to 
locate people who are lost. Time is 
critical as the lost person's chance 
of survival decreases over time. 
One method of improving search 
outcomes is efficient and accurate 
planning of search areas. Search 
and rescue planning techniques 
have been developed over time 
through extensive training, 
experience and knowledge. To 
expedite the search area planning 
process, an agent-based model 
(ABM) was used to highlight 
probabilistic and evidence-based 
areas typically considered by search 
area planners. This model takes 
spatial data calculated to a time-
cost raster and incorporates lost 
person characteristics to determine 
location-specific probability data 
that can be used in decision-
making.

Using an agent-based 
model to identify high 
probability search areas 
for search and rescue

Introduction
Hiking in the wilderness is a popular pastime with benefits 
for personal fitness and wellbeing as well as creating positive 
relationships with the physical environment (Taczanowska 
et al. 2014). In Australia, hiking was the sixth most popular 
physical activity in 2019–20, with approximately 1.5 million 
adults participating (Sport Australia 2021). With hiking being 
so popular, it is unsurprising that thousands of people get 
lost every year (Alanis et al. 2019, Department for Transport 
2022, Australian National Search and Rescue Council 2019). 
In 2019, search and rescue (SAR) organisations in Australia 
conducted 1,820 land operations to locate lost people 
(Australian National Search and Rescue Council 2019). With 
the probability of a lost person's survival decreasing over 
time, proper planning to make the search more efficient is 
essential (Syrotuck 1976). Practical tactics can be employed to 
reduce this time such as reducing the size of the search area 
using better geographic assessments of where the lost person 
is likely to be and to find the missing person in the shortest 
possible timeframe (Doherty et al. 2014, Ferguson 2008).

Spatial modelling has been incorporated in SAR using 
mobility models that estimate the distance a lost person 
may have travelled (Doherty et al. 2014, Alanis et al. 2019, 
Yoo & Lee 2019). When a person is lost in the Australian 
wilderness, SAR personnel use a spatial model referred 
to as the 'ring model' to assist searchers to locate the lost 
person (Australian National Search and Rescue Council 
2020) (Figure 1). The ring model indicates to search planners 
how far a lost person may be located away from their last 
known position (LKP) based on statistics from previous 
search incidents. The ring model is a common way to 
assign probabilities to search regions. It is based on quartile 
distance statistics and uses buffer rings from the LKP as 
probability circles by subject categories (Sava et al. 2016).

Spatial modelling has been developed to assist in narrowing 
the possible location of a lost person. Probability mapping 
conducted by Jacobs (2015) used the percentage of lost 
people found in locations with specific terrain characteristics 
to determine the probability of a likely location based on 
those characteristics. Drexel, Zimmermann-Janschitz and 
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Koester (2018) used network analysis of linear features as well as 
elevation and statistical data to determine areas of probability 
for lost person locations. The watershed model was used in 
Yosemite National Park by Doke (2012) to determine the number 
of watersheds crossed by a lost person in order to create a 
probability map of watersheds most likely to contain the lost 
person. Lin and Goodrich (2010) used a Bayesian approach to 
generate a probability map for SAR. This method drops thousands 
of simulated subjects around the LKP and a Markov Chain Monte 
Carlo1 simulation is run where the probability of moving from one 
cell to a neighbouring one is dependent on the environment in 
both those cells (Sava et al. 2016). In a similar approach, Alanis et 
al. (2019) developed a mechanistic model using a Markov Decision 
Process, specifically a Decision Tree Algorithm that incorporates 
a heuristic pathfinding algorithm to predict the movements of a 
person lost in the wilderness. There is currently no evidence to 
suggest that any of the spatial models described, beyond the ring 
model, have been used in real-time SAR incidents.

When SAR commanders are planning search areas, they look for 
features in the area that, through their training and experience, 
stand out to them as areas a person might likely be, such as 
tracks, ridgelines, fences and rivers. Conversely, they also identify 
areas a lost person is unlikely to have travelled to due to terrain 
difficulty or behavioural reasons. These subjective assessments 
could be incorporated into spatial models, providing more 
consistent approaches and opening them to rigorous scrutiny.

ABMs are potent tools that can help to understand the 
behaviour in complex spatial systems (Ye & Mansury 2016). They 
have shown promise in SAR application, as they incorporate 
movement across landscapes. ABMs consist of 3 elements: 
an agent, the environment and interactions between ‘agents’ 
(autonomous decision-making entities) and the environment 
(Macal & North 2010). The environment is where phenomena 
occur, and agents inhabit that environment (Gammack 2015). 
Some studies have successfully used ABMs as a probabilistic 

approach to SAR (Hashimoto & Abaid 2019, Mohibullah & Julier 
2013, Mohibullah 2017). However, these studies are based on 
developing total search areas for searching by unmanned aerial 
vehicles not by a ground search by search teams. Hashimoto 
et al. (2022) created an ABM using a combination of real-world 
terrain data and lost person incident behaviour data. Rather 
than determining search areas, they used the model output to 
determine behavioural profiles of hikers (Hashimoto et al. 2022).

This paper describes the application of an ABM developed to 
model the movement and probable location of people lost in 
the wilderness in Australia. The model is outlined and the output 
assessed to highlight areas that may be considered in search area 
planning.

Methodology

Study area
Tidbinbilla is a nature reserve in the Australian Capital Territory 
and was selected as the region for study and application of the 
model. The study area selected within Tidbinbilla Nature Reserve 
is formed by a rectangle of 19 km by 11 km (centred on -35.44959 
148.86686) with an area of 209 km2 and elevation ranging 
between 594 metres and 1,649 metres (Figure 2). This study area 
was chosen because it contains varied terrain and attracts many 
visitors due to the popularity of walking tracks. Tidbinbilla is an 
area where SAR assistance has been needed due to lost person 
incidents (P. Ibbott, personal communication, 11 December 2020).

Data
There is spatial data that influences how people traverse 
wilderness regions. The first is a terrain ruggedness index (TRI) 
layer, which captures the elevation difference across the terrain 
(Bosworth-Ahmet 2020). The second is a vegetation density 
layer. To create these layers for the study area, LiDAR2 data 
were obtained from the ACT Government. These data were 
resampled to create a 40-metre Digital Elevation Model (DEM). 
From the TRI and vegetation density rasters, a cost raster was 
created reflecting the amount of time it would take to traverse 
each 40-metre cell horizontally or vertically using an average 
human walking speed (Peper, de Dreu & Roerdink. 2015). The 
use of Naismith’s law, as used by SAR personnel was considered. 
However, the technique used in the model measures the cost 
of crossing a cell without considering the slope or direction 
of travel. Travel time increased from 0.49 minutes to traverse 
a cell with low vegetation density and less rugged terrain to 
1.30 minutes (165% increase) for cells with dense vegetation 
and rugged terrain. The walking tracks within the study area 
were created as a vector layer using a combination of the ACT 
Road Centrelines dataset (ACT Government 2021) and manual 
digitisation of a Strava heatmap of the area (Strava 2021).

 

Figure 1: The ring model with Euclidean distances from the LKP for 
the hiker category 
Source: Koester 2008

1.	 A statistical method of Bayesian inference where random observations are 
indirectly simulated from complex probability distributions (Everitt 2002).

2.	 A mapping technology using lasers to make digital 3-D representations of areas 
on the Earth's surface and ocean bottom.
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ABM specification
The ABM was developed using Netlogo software (Wilensky 
1999). This software was chosen as it is open source, there is 
extensive support documentation online, and it has a Geographic 
Information System (GIS) extension that allows raster and vector 
data to be incorporated into the model.

An ABM requires an environment and agents who interact 
with the environment. Agents are placed within the model and 
provided with simple rules to govern their behaviour. At each 
time-step, an agent autonomously decides whether to move 
and, if so, in which direction. The decisions made by agents are 
determined using rules incorporating behavioural characteristics 
and the underlying environment as well as the inclusion of 
randomness. Decisions about whether an agent moves depend 
on the current cell, characteristics of surrounding cells and the 
characteristics of the agent itself. Even though an agent can only 
move one cell, they can take a much larger neighbourhood into 
account for decision-making.

In the model for this study, the agents represent multiple 
instances of a single lost person, initially placed randomly 
within a user-specified radius of the last known point of the lost 
person to account for uncertainty in location, the time lost and 
movement prior to the search commencing. The time elapsed is 
set as the total time lost and agents individually record the time 
taken to traverse a cell or the time spent resting. As the agent 
moves, it maintains an attribute list including the current goal 
(which determines the direction the agent will face), the time 
elapsed, distance covered and fatigue level.

The model parameters include the likelihood a person would stay 
on a track, the possibility of stopping on a track and the physical 
condition of the lost person. The physical condition is represented 
as the time before fatigue sets in and incorporates the amount 
of rest required before continuing. Stochasticity (randomness) 
was integrated into the model through the random starting 
point of each agent and the direction they are facing, the agent's 
autonomous choice of goals, randomness of the fatigue elements 
as well as the required rest time. It is important to incorporate a 
level of randomness into the model due to the complexity and high 
degree of variability in human behaviour and decision-making.

Running the model
While it is possible to run the model with numerous variations 
of parameters, 3 theoretical case studies were developed to 
demonstrate how different parameters based on lost person 
behaviour can affect the model's outcome. The case studies were 
determined using results from the study by Darcy (2021) into lost 
person behaviour in the Australian wilderness. The first 3 case 
studies use profile characteristics outlined in Table 1. All 3 case 
studies assumed the same LKP and time lost. The model was run 
for the same length of time (4 hours). These case study profiles 
translate to the parameter settings in Table 1.

Each of the lost person scenarios was run in the model and 
the output was exported to a GIS. Kernel density analysis was 
conducted to determine the probability quartiles and a 95% 
probability area.

 

Figure 2: The study area for the model was Tidbinbilla Nature Reserve in the Australian Capital Territory.
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Table 1: Parameter settings for case studies.

Profile Characteristics Case Study 1 Case Study 2 Case Study 3

Gender Female Male Male

Age 35 60 19

Physical condition Poor to Moderate Moderate Good

Wilderness experience Low High Low

Parameters

Probability of travelling off-track Low (20) Moderate to High (60) High (80)

Probability of stopping once on a 
track

Moderate to High (60) Moderate (40) Low (20)

Time before fatigue Low (15) Moderate (25) High (40)

 

Figure 3: Kernel density analysis results from case study 1 overlayed with the ring model.

 

Figure 4: Kernel density analysis results from case study 2 overlayed with the ring model.

Results

Case study 1
Case study 1 modelled a 
35-year-old female hiker with 
poor-to-moderate physical 
condition and little experience 
in the wilderness (Table 1). 
The resulting probability map 
(Figure 3) is consistent with the 
profile female staying on track 
and being more likely to stop 
once on a track, hence the high 
density on the tracks closest to 
the LKP.

Case study 2
Case study 2 was of a hiker 
with the profile of a 60-year-
old male with moderate 
physical condition and high 
experience in the wilderness 
(Table 1). The model predicted 
a larger search area than in 
case study 1, with the highest 
probability areas located 
around a nearby track (Figure 
4). This is consistent with a 
person who does not move a 
significant distance and tends 
to stay near tracks.
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Discussion
Time is a critical factor in the survivability of a lost person 
(Sava et al. 2016). This study demonstrated how an ABM can 
incorporate spatial and lost person behaviour to highlight areas 
of probable value to a search area planner to expedite the 
planning process. The results from the case studies show that 
the characteristics of a person and the terrain they are trying to 
traverse can significantly affect their likely location.

While SAR personnel are aware of the relationship between lost 
person behaviour and terrain, the model can emphasise areas 
using data to provide likely search locations for consideration 
in search area planning. This is visualised in the first case study, 
where the lost person is more likely to stay near a track and not 
travel far due to lower physical condition. Case study 2 showed a 
dispersed probability area, although the highest probability was 
to remain near a track. When people are more mobile and tend 
to travel further, as demonstrated in the case study 3, the higher 
probability areas derived from the model tend to be clustered 
about areas containing paths. However, the search area itself 
can be much larger. When off-track, areas of less challenging 
terrain are more probable locations, indicating that the agents in 
the model consider the cost of traversing a cell prior to moving 
and choosing the path of least resistance. Case study 3 showed 
higher probability areas circular from the starting point that 
demonstrated that the agent ignored the paths. This creates a 
ring indicating where agents reached after 4 hours, with a high 
probability of travelling further and being less likely to stop on 
paths.

The model considers that a person will likely move to a path if a 
path is visible, choosing the least challenging terrain to get there 
and changing direction depending on the difficulty of the terrain 
and what they can see. Using an ABM, search area planners can 
consider the results of the model when making decisions on where 
to start searches and where to focus effort and human resources.

Factors such as fatigue as well as the difficulty of the terrain a 
lost person may be traversing are generally taken into account 
by search planners. The Australian State Police Search and 
Rescue Coordinator's Course Training Booklet (Whitehead 2018) 
encourages SAR personnel to apply the subjective method to 
search area planning. This method uses maps and professional 
knowledge to assess the terrain, boundaries and potential 
barriers to identify search areas. This ABM builds on that 
knowledge and provides additional evidence-based advice for 
decision-making in search area planning.

Model limitations and potential improvements
Parameterisation of ABMs can be subjective and difficult to 
validate. However, the goal of the model is to highlight areas 
that may be considered for a search rather than attempting to 
predict the exact location of the lost person. By using the ABM 
and understanding how lost people behave and react within the 
environment, informed recommendations can be made of which 
areas are the highest priority in search area planning.

While the model is stochastic, some static numbers informed 
by research into human movement (Gast, Kram & Riemer 2019; 
Peper, de Dreu & Roerdink 2015) are still used that limit the 
randomness of the model. It is possible to change these numbers 
within the code to reflect a real-life situation better when the 
incident warrants it. Further development and refinement of the 
model is required for operational use, including incorporating 
additional lost person behaviour, decision-making and how 
lost people choose their goals. However, comparing the model 
outcomes with points of interest in search planning shows that 
these assumptions and parameters are plausible and realistic.

Currently, within the model, the main goal for the lost person 
is to find a track and either continue to travel on it or to find 
another track. The incorporation of additional goals for agents 
might prove beneficial to increase the model’s accuracy.

Case study 3
Case study 3 modelled a 
19-year-old male hiker with 
good physical condition 
but little experience in the 
wilderness (Table 1). The 
results showed the high 
mobility of the lost person and 
a high probability of moving 
off tracks (Figure 5), which is 
consistent with the profile. 
The high probability areas 
away from the tracks include 
ridgelines and some valley 
areas.

 

Figure 5: Kernel density analysis results from case study 3 overlayed with the ring model.
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SAR personnel use decision points to pinpoint locations where 
a lost person may have veered off course or lost the track, such 
as at track junctions, water crossings, sharp bends, or elevation 
changes (Australian National Search and Rescue Council 2020). 
Koester (2008) recommended that the next step for computer-
based planning tools would be to locate these decision points 
for use in algorithms that take advantage of that information. 
Further development of the model presented in the study 
could assist to determine such features through studying agent 
movement. The model could be expanded to determine the 
least-cost path for navigation and to highlight accessibility and 
predict human movement in the wilderness for emergency 
planning and protected area management.

Implications of applying the model to SAR
One complicating factor in all human movement modelling is 
that the behaviour of people can be difficult to predict when 
combining unknown goals, motivations and decision-making 
processes. This is especially the case with lost people, who can 
act irrationally and out of character due to emotions such as 
fear Dacey (2021). There is further uncertainty when a person 
is lost as to whether they are genuinely lost or if they are simply 
overdue, or if they are trapped or injured (Koester 2008). 
The model described in this paper can be developed to be an 
accurate predictor of human movement in the wilderness. 
With the inclusion of additional data such as updated agent 
goals, behavioural and movement information and appropriate 
validation data, the model could be used as a location predictor 
rather than an indicator of areas of interest.

The ABM described in this study has parameter settings that 
can be altered based on lost person characteristics. The spatial 
data requirements are terrain ruggedness, vegetation density 
and track data. With these datasets preloaded, there is no 
requirement for connectivity to the Internet and it is possible 
to run the model in the field during a SAR incident. However, 
current data availability and processing speeds means it is not 
feasible to develop and run models in real-time to be used in the 
field. The results of the model can be displayed on a map that 
can be considered in search planning.

Conclusion
The ABM used in this study showed that this type of model can 
be an additional tool for search area planning by highlighting 
areas of interest for search area planners. While no model 
produces exact results, ABMs are powerful spatial models that 
can produce complex patterns based on simple movement rules. 
However, they are under-used in SAR and similar applications. 
The model requires limited publicly available spatial data and 
can be adapted to most wilderness areas. Having an automated 
process for developing the underlying environment raster 
and creating a user-friendly application to run the model may 
encourage its use in SAR incidents. While there is a great 
deal of uncertainty in lost person behaviour, this model uses 
randomness combined with accurate spatial data and statistically 
significant lost person behaviour to highlight probable areas a 
lost person may have travelled. The results of this model are 

aimed at search planners to provide additional information to 
refine search areas by producing evidence-based information for 
planning. With development and validation, the model has strong 
prospects as a search area planning tool to provide individualised 
results based on the lost person situation.

Data availability statement

The data that support the findings of this study are 
openly available in Figshare at https://doi.org/10.6084/
m9.figshare.16823617.
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